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Diagrammatic Problem solving 

Svend Østergaard og Frederik Stjernfelt 

 

In this paper, we shall look at types of problems and their interplay with 
diagrammatic representation. The general notion of diagram goes back to 
Peirce  (e.g. "PAP", in Peirce 1976, 316ff), see (Stjernfelt 2007 ch. 4) for an in 
depth introduction. Here, we will focus upon prototypical diagrams  - a two 
dimensional, stylized topological (geometric) representation of some subject 
matter. In some cases this representation is analogical as for instance in a map 
of a country, but in other cases it is a geometric representation of quantitative 
relations as for instance in a pie chart diagram. The difference is whether we 
map an already existing geometric relation onto the diagram or whether it is 
quantitative or other relations which are geometrized. If we add time as a 
dimension to the traditional spatial dimensions, we can also interpret 
temporal relations as geometric so for instance a flowchart diagram of 
information currents in a company will qualify as a diagram of geometric 
relations. However, there are other relations than spatial/temporal and 
quantitative; for instance interpersonal relations: a crime investigator might 
set up a diagram of possible interpersonal relations between the different 
suspects and associates in order to get an overview of the problem. In short: a 



prototypical diagram is a two-dimensional geometric representation of 
something we may qualify as “relations” which might then be 
spatial/temporal relations, quantitative relations, interpersonal or other 
relations.  

When we have a diagram then it is possible to explore it. This exploration can 
take two forms 1) the exploration does not add anything to the diagram but 
consists in an examination of possible true statements that may be deduced 
directly from the diagram. This is the case of most information in both the pie 
chart diagram and the map of the country. From the map we can read the 
distance between A and B (given the map scale), find the shortest route 
between A and B etc. without adding anything further to the map.1  2) In the 
second type of explorations there is a manipulation of the diagram. In the 
example with the crime investigation the detective might add some 
connections in the diagram just to check if these connections are true what 
can then be deduced. In Peirce’s theory (e.g. "Minute Logic", 1902, CP 4.233) 
and (Stjernfelt 2014, ch. 10) these two types of diagrams are called theorematic 
(when there is manipulation or the addition of further elements) and 
corollarial when the information can be read off the diagram directly. This 
terminology is well known from mathematics where the theorems that the 
mathematician proves are the hard stuff requiring information that is 
imported from outside the problem space, often introduced as lemmas, and 
the corollary is the true statement that can be read off directly from the 
theorems without further manipulation. It is clear from Peirce’s definition 
and examples of theorematic reasoning that by ‘manipulation’ he does not 
just refer to external manipulations of the diagram but also to any mental 
manipulation so that if the problem solver confronted with the diagram 
imagines some kind of operation on the diagram it qualifies as theorematic 
																																																													
1	Even	in	this	case,	however,	it	could	be	argued	that	something	is	added	-	namely	the	points	
departure	and	destination	and	the	line	routes	explored	between	them.	In	this	sense,	the	
distinction	we	are	making	is	rather	one	of	a	continuum	between	less	and	more	
manipulation/addition.	



reasoning; for instance, in the mundane case of a map one can image things 
like “if I go this way I get to B” etc. For this reason, theorematic reasoning 
constitutes a heterogeneous set that can be explored further for internal 
differences and subtypes; an attempt of this can be found in (Stjernfelt 2014, 
ch. 10.3).  

Solving a problem is, to a large degree, a question of focusing on the right 
information, and a diagram is a representation of information relevant in the 
situation. In the following we will briefly present a typology of types of 
problems and the corresponding diagrams. The diagram is per definition a 
geometric/topological structure so if the source is not itself geometric the 
diagram is the result of a mapping from another source domain to a 
geometric domain and this mapping is performed by humans, so the diagram 
is not just the visual representation but is in fact indicative of how ways the 
human mind may work. In other words, thinking is already diagrammatic. 
This connects to Peirce’s radical claim that solving any mathematical problem 
necessarily involves diagrammatic manipulation; this is because it is through 
diagrammatic representation and diagrammatic manipulation that the mind 
accesses the information necessary to solve any given problem. 

 

Information internal or external to the problem space 

The major distinction concerning problem solving is whether all information 
is present in the diagram or whether one has to add information from outside 
the problem space. The first is the prototypical case and includes all types of 
dynamic operations on a given diagrammatic representation. They may be 
mental or they may involve addition of elements as long as they belong to the 
problem space. A case of a rule-governed manipulation we find in chess. The 
position on the board can be considered as a diagram which you can only 
manipulate following certain rules; the chess player reasons by imagining 



moving a piece and estimating the possible opponent moves and in this way 
she might find the optimal solution of the position.   

 

 

The classical example mentioned by Peirce is Euclid's proof that the sum of 
the angles in a triangle is 180° a version of which is given above. Given the 
triangle ABC, you extend the line BC to D, and from C you draw a new line 
CE parallel with AB. The angle between this new line CE and AC is identical 
to the angle A and the angle between the new line and the extended line CD 
is identical to the angle B. So, the three angles meeting in C are the same as 
the three angles of the triangle, and as BD is a straight line, the three add up 
to 180°. So, the sum of the angles is 180°. Although two new elements are 
added, they do not come from outside the problem space, on the contrary 
they, as well as the triangle, are part of the two dimensional space and they 
are drawn according to the general axioms of Euclidean geometry - which are 
analogous to the chess player who imagines moves in accordance with the 
general rules of chess. In both cases, however, what is additionally required 
for the problem solver is some strategic information. It is not sufficient to 



know Euclid's axioms and chess rules - in both cases, some sort of strategy 
must be pursued: the relevant auxiliary lines to add must be chosen over an 
infinity of others, and strategically clever moves sequences must be chosen 
among the finite set of possible moves.  

 

A subclass of problems in the general category of information extraction from 
the diagram space is what we could call a perspective shift. This might 
include all cases where there is a reorganization of the elements in a diagram 
based on abductive reasoning, i.e. a manipulation that is not rule-governed. 
For instance, the crime investigator might reorganize the relations shown in 
his diagram of the possible connections between the criminal elements, this 
might involve a perspective shift where instead of A, B now is considered the 
main culprit. An example from science could be Copernicus' reorganization 
of the Ptolemaic model of planetary movements. Instead of taking the sun as 
the center of the movements Copernicus took an Earth-centered viewpoint, 
not based on any rules but because he sensed that this could explain the 
empirical observations better. In (Stjernfelt 2014, 278f) another Peircean 
example from mathematics is discussed - a proof of Desargues' theorem -  
where the reorganization consists of embedding the elements in a three-
dimensional space instead of two-dimensional.  

 

The type of problems described above contrasts the cases where the 
information needed is not present in the problem space. For instance, the 
diagram of the criminal investigator typical contains question marks. Empty 
slots in the diagram that the investigator tries to fill out by looking for clues 
he does not yet know about. The typical examples of this group of problems 
are mathematical problems, though. Mathematical problems will in many 
cases need helping theorems so-called lemmas. A lemma is itself a theorem of 
a simpler kind and often not directly connected to the problem in question; 



for instance, to know if one can find the solutions to an equation of nth degree 
one has to know something about the possibilities of permuting a row of n 
letters, which obviously belongs to another domain than solving an equation.  

 

Insight problems 

In the gestalt approach to problem solving the focus is on another distinction, 
namely whether the solution requires insight or not (Köhler 1925, Duncker 
1945, Ohlsson 1992) - which may be seen as a correlate to the 
theorematic/corollarial distinction. Insight can be defined by whether a 
specific target element has to be accessed in order to solve the problem or not. 
Consider for instance the following problem: Describe how to put 27 animals in 
4 pens in such a way that there is an odd number of animals in each pen. This 
problem can only be solved by putting all the animals in one pen and place 
the others in concentric pens around it. The target element is in this case the 
diagram of concentric circles, without accessing that diagram the problem 
cannot be solved. We can schematically represent the idea of a target element 
in the following way: 
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To the left we have the different positions that the problem solver will move 
between without getting the solution, but she might accidentally cross the 
boundary and hit the target element on the right, in which case the solution 
becomes trivial.  

The insight problems are opposed, of course, to problems that do not require 
insight. The border between the two classes is slippery, though; take for 
instance a chess problem. One can make a program that can solve any 
problem instantly and this is not done by insight but by systematically going 
through all possibilities until it hits upon the solution, but for humans the 
cognitive process that leads to the solution will  proceed along strategic 
schemata  and have the characteristics of insight which possibly is 
measurable in the problem-solving indivdual as an increase of entropy in 
behavior just before discovering the target move. For instance, in (Metcalfe 
and Weibe 1987) people’s feeling of warmth are recorded while they solve 
insight and non-insight problems. There was a progressive increase in 
warmth during non-insight problems. But with insight problems the warmth 
ratings remained at the same low level until suddenly increasing 
dramatically shortly before the solution was reached. Similarly, in (Stephen 
et.al 2009) it is shown that when people solve a gear problem (see below) 
there is an increase in entropy just before the see the optimal strategy of 
counting the gears. Here the entropy is measured through eye tracking, i.e. 
the gaze pattern is stable for a long time, but just before reaching the solution 
it becomes instable. So it seems that in terms of behavioral dynamics the 
insight problems are determined by a catastrophic point, namely reaching the 
target element whereas solving non insight problems is determined by a 
continuous process reflecting that these problems  are routine tasks and tasks 
where information is used incrementally, as e.g. in the Tower of Hanoi 
problem (Ohlsson 1992). 



We can now classify problems and their relation to diagrams according to 
whether it is an insight problem or not. If it is not an insight problem, then 
the diagram is a representation of some subject matter and from this 
representation it is possible to extract information by making mental 
operations without fundamentally changing the diagram, as mentioned 
above.  For instance, a prototypical diagram is a flow chart diagram, which is 
a representation of the temporal dynamics of some domain: water flow in a 
heating system, information flow in an institution, etc. Given such a diagram, 
one can read off possible routes in the diagram; similarly in the pie chart 
diagram one can get direct information about relative size of expenditures in 
a single domain. However, in these examples, as is often the case, the 
diagram is a representation of a source domain so one can make experiments 
on the diagram in order to find alternative organizations of the source: if the 
heating system doesn’t work properly one can look at the diagrammatic 
representation to solve the problem. Whether the manipulation is relying on 
insight or not is determined by the underlying process as mentioned above, 
so if we manipulate a map incrementally to get to the solution it is not 
insight, but if we have to use some hitherto unknown property of the 
diagram it may be insight.  

 

The insight problems we propose to divide into three types. Firstly, we have 
the insight that relies in information that is present in the problem space and 
which, although not easy to find, do not violate entrenched schematic 
representation of the field. Solving the problem of finding the sum of the 
angles in a triangle is an example of this. Remember: insight problems hinges 
on a target element that gives access to the solution. In the case of the sum of 
the angles the target element is the line parallel with AB, cf. the figure above. 
When this line is added to the diagram the problem becomes corollarial 
because this line provides direct access to the solution. Although not easy to 



find, the parallel line does not violate any schematic knowledge about 
geometry, cf. above.  

Secondly, we have the problems where the solution requires new elements 
that are not directly accessible. This includes the cases mentioned above: the 
criminal investigation where one clue might give the insight to the solution 
and of course the mathematical problems where some external element might 
be the clue.  

 Thirdly, we have an interesting class of problems where the target element 
might or might not be part of the problem space but where it will in any case 
constitute a violation of entrenched knowledge or entrenched schematic 
representations of the world. Entrenched knowledge gives rise to fixation 
according to the gestalt theorists (Duncker 1945). The mind was fixed in a 
specific representation, which blocked access to the solution. The problem of 
the pens mentioned above is an example of fixedness of representation, since 
we tend to think of pens with animals as disjoint. Manipulating the pens in 
order to solve the problem is a diagrammatic manipulation. In this work one 
can only solve the problem if one stumbles upon the target element, which in 
this case is the concentric arrangement of the pens. In (Stjernfelt 2007) we find 
an interesting example of the same type of problem namely the German 
geographer and explorer Alfred Wegener’s discovery of the plate-tectonics of 
current geology. Wegener was doing simple diagrammatic manipulation 
using the information you have on a map of the world and noticing that the 
West coast of Africa fit with the East coast of South America. This is more 
than just using the information present in the diagram because it requires the 
breaking up of the entrenched assumption that the continents were fixed. 
Geometrically, of course, the manipulation is simple, but geologically, the 
manipulation broke with entrenched assumptions about the structure of the 
Earth crust. One can also mention the Copernican revolution as an instance of 
this, breaking with the entrenched and religiously motivated assumption that 
the Earth is the center of the universe -  or the discovery of non-Euclidean 



geometry breaking with the assumption that if we have a point outside a line 
we can draw exactly one other line through the point that is parallel with the 
given one. Or the definition of imaginary numbers: When Cardano tried to 
find a solution of an equation of third degree he introduced the square root of 
a negative number in the formulas for the solution. In order to solve a 
problem concerning real numbers he had to invent a wholly new type of 
number outside the domain of real numbers. So this is a case where the 
diagrammatic manipulation of the equation reaches an obstacle which give 
rise to a redefinition of our very concept of numbers2. This is in many cases a 
central purpose of diagrammatic reasoning, namely to find the problematic 
spots in the reasoning process.  

 

To summarize: we have problems that imply simple diagrammatic 
manipulations and problems that can only be solved by accessing one (or 
more) target elements, for instance in finding the sum of the triangle there 
might be more elements that could provide the solution. In the last case the 
target element might, in some cases, constitute a break with our entrenched 
knowledge about the world and finally the target element might be part of 
the problem space as is the case with the four pens and the sum of the 
triangle or it has to be imported from outside the problem space as is often 
the case for mathematical problems.  

 

 

 

Diagrammatic re-description and diagrammatic re-encoding 

																																																													
2	An	equation	is	a	diagram	because	the	spatial	arrangement	determines	what	manipulation	can	be	
done.	



 One of the characteristics of human cognition is the ability to represent a 
subject matter in an external format; for instance represent the landscape in a 
map or the country’s finance in a pie chart diagram. This is a re-description of 
a subject matter in a representational format, i.e. a representational re-
description. We find this notion in (Karmiloff-Smith, 1992) where the ability 
to redescribe a subject matter in in another symbolic representation is seen as 
a basic aspect of the cognitive development of children. As the examples 
suggest, a diagram is a representational re-description, so the basis for this 
cognitive ability and thereby the ability to make abstractions is the 
diagrammatic thinking. The diagrammatic re-description is the key to 
improve already existing representations. Take as a simple example the 
decimal number 5,5. In this number there are two fives but they don’t mean 
the same thing. The meaning is determined by the spatial position and for 
that reason it is an example of a diagram that would replace a more 
cumbersome representation using fractions. We find another prime example 
of diagrammatic re-description in the so-called algebraic geometry. The basic 
idea is that curves can be represented in a symbolic format by equations. For 
example x2 + y2 = 5 represents a circle of radius 5. One diagram, a drawn 
circle, is represented by another diagram, an equation. It is possible to make 
(algebraic) manipulations with the last diagram and thereby prove any 
number of properties of curves easier than by the purely geometric methods 
of the classical Greeks.  

The notion of diagrammatic redescription is closely related to the gestalt 
notion of re-encoding (Ohlsson, 1992). In the gestalt tradition re-encoding 
means that some aspect of the problem representation is reinterpreted. In a 
diagrammatic representation this means that elements in the diagram are 
given a new interpretation; for instance, in Alfred Wegener’s discovery the 
continents are re-encoded as being slowly floating instead of being stationary. 
As the example suggests, re-encoding is mostly a case of insight. The 
situation is coded according to some entrenched assumptions which block 



access to the solution. In other words, access to what we have called the 
target element sometimes requires a re-encoding.  In terms of diagrammatic 
representation this is of course relevant for the problems whose solution 
relies on perspective shift and the examples mentioned above would be 
typical for a recoding procedure: recode the problem as embedded in 3D and 
recode the sun as the center for the planetary moves.   

 

A special case: the Cogwheel experiment 

In an experimental setup that is described in more detail below, participants 
organized in pairs look at a board with a string of connected cog wheels; they 
then have to determine what way to turn the first cogwheel in order for the 
last one to turn left or right. This example shows a dual aspect of 
diagrammatic thinking: on the one hand the problem is presented in the form 
of a diagram, so the board with the represented cog wheels is no different 
from a map of a country, a pie chart diagram etc. It is then possible to 
perform bodily and/or mental operations, i.e. experiments on the diagram. 
However, in this case the representation the participants make in solving the 
problem are themselves diagrams; for instance, one pair might make gestures 
of circles, another might follow the contour of the cogwheels in a continuous 
curve, etc. We consider all these gestures as diagrammatic representation of a 
procedure that will lead to a possible solution. The transformations of the 
gestures during the trials correspond to the manipulations of a diagram 
whereby the diagram might change considerably. For instance, a participant 
might start by making circles, alternating between circles turning clockwise 
and circles turning anti clockwise from wheel to wheel, this may degenerate 
into a simple wriggling and then finally just a pointing. This corresponds to a 
process where superfluous information is discarded, and the implied 
diagram changes appropriately. For instance the process full circle -> 
wriggling -> pointing corresponds to discarding first the information about 



the size and turning of the wheels, leading to a simple wriggling indicating 
direction, then discarding the information about the direction of turning 
leading to a simple pointing, often accompanied with speak indicating 
symbolized directions . This corresponds to a process of abstraction, which is 
a way to make a representation of the subject matter that discards 
unnecessary information.  

Is this case of diagrammatic problem solving an instance of insight or not? 
The answer is that it may be both. If the solver sticks to the mechanics of the 
system of wheels then it is easy to solve the problem in a pedestrian way by 
keeping track of how each individual wheel turns. This is mechanical and 
does not require any insight; it’s like finding one road in a map. The insight 
requires a perspective shift as in the cases mentioned above, namely from a 
system that consists of n wheels to a system that only contains two wheels. 
Every second wheel is categorized as the same so every time we count an odd 
number of wheels it is the same as the starting wheel and every time we 
count an even number it is the same as the second wheel. The final insight is 
then to see that also the number of wheels is unnecessary information. The 
only necessary information is whether there is an odd or even number of 
wheels (so the counting may also proceed as "odd-even, odd-even, ..." or "A-
B, A-B, ..."). The purpose of the experiment is to see if the participants get to 
this insight, and if so, how.  If they do, to what extent can this be predicted 
from the gestures (diagrams) they produce from the very beginning.  

Cog wheel lessons 

In the following, we shall present some results from the cog wheel 
experiment realized at the Center for Semiotics in Aarhus in 2012-14. The 
overall idea is to present a cog wheel problem as described above to two 
persons in order to investigate their collaboration activity during their 
solution. The problem was presented to each pair of participants on a 60'' 
screen on the wall with an empty space before it so that the pair is able to go 



close to the screen, gesturing and touching it if they so wish.  The activities of 
each pair was then videofilmed and recorded, just like their gestural activity 
was recorded by measurement devices on their wrists. A simple example of 
the task is the following:  

 

 

 

The task is to determine whether to pull the left or right lever in order to give 
the rabbit access to the carrots rather than to give the lion access to the rabbit. 
The cog wheel diagram requires an interpretation in which the single wheels 
are able to move around their center and thus pass energy and resulting 
movement to connected wheels. This interpretation of the diagram, in itself 
static, as a dynamical physical system is so obvious that participants 



immediately adopt it, requiring no explicit instruction in diagram rules in 
order to begin solving the problem.  

 In the experimental setup, 25 pairs of participants solved a series of 
cog wheel tasks. Each pair was subjected to 18 trials with different gear 
systems, advancing from around 5-6 connected wheels to 13 gears. In a final 
trial, they were presented with a problem containing 28 gears, in which their 
solution time was measured. The initial idea behind the experiment was that 
two different solution strategies are at hand (Stephen et al. 2009) - one 
continuous and one discrete. The continuous strategy follows the imagined 
wheel movements from one wheel to the next - while the discrete strategy 
indicates, in stepwise sequence, the movement of each wheel as the opposite 
direction of the former. Earlier experiments (ibid.) seem to show that the the 
former strategy is the most immediate while access to the latter, more 
efficient strategy takes the shape of a phase transition in the 
conceptualization of the problem. By presenting the problem to collaborative 
pairs of participants rather than to single participants, the idea was to 
investigate whether the phase transition in solution behaviour was primed or 
accompanied by significant changes in communicative behaviour, gestural or 
linguistic. Findings proved more complicated, however, indicating that there 
are indeed several possible phase transitions in solution strategies, combining 
verbal and gestural behaviour in characteristic ways.  

 The simplest and to some participants most immediate strategy 
traces the movement of the initial wheel with a circling finger and then goes 
on, continuously, to successive wheels. This can be called the "continuous 
motor strategy", and in the respondents, this strategy is never accompanied 
by verbal differentiation of direction (like "this way"/"that way", "left"/"right", 
"up"/"down" etc. ) 

 



 

 

Group 13 is an example of this strategy. Its final trial solution time is a bit 
above average. Another strategy could be called the "wiggling hand" 
strategy. Instead of continuously tracing movement from one wheel to the 
next, the movement of wheels is indicated by alternate hand movements, 
typically with the hand a bit removed from the screen. The ‘wiggling hand’ 
differentiates directions and often leads  to effective (abstract) strategies,  
such as the accompanying of wiggling with verbal differentiation of direction 
or pointing accompanied by counting.  

 



 

 

Group 24 forms an example of the wiggling strategy. A peak in reaction tie 
around trials 13-14 might indicate problems in solution strategy which are 
subsequently solved, forming a phase transition to a better strategy - with a 
resulting last trial significantly below average.  

 

Solution strategies 

 

Looking at the whole population, the types of behaviour are found to have 
considerably more possibilities than the simple continuous/discrete phase 
transition orgininally assumed.  



 Focusing upon gesture, we find no less than 5 qualitatively different 
hand/arm movement patterns: 

 

1. Drawing a full circle for each wheel, typically with just one finger on 
the screen  

2. Drawing the half arc of a circle before continuing to the next wheel, 
typically with one finger.  

3. Wriggling the open hand left or right over each wheel 

4. Drawing one continuous curve following the outlines of the gears  

5. Pointing sequentially to wheel after wheel, typically with one finger  

 

As to verbal behaviours (apart from coordination talk, meta-talk and jokes 
etc. among participants), we observe 4 qualitatively different types:  

 

1. Causal reasoning: ”if we pull this one, then this one goes up”, 
abbreviated to ”if this way then this way” or just ”this way, this way”  

2. Describing the alternativng directions of movement of the wheels: ”left, 
right” or ”clockwise, anti-clockwise”  

3. Silence (while gesturing) 

4. Counting: 1, 2, 3 etc. 

 

These different gestural and verbal behaviours are found to combine in the 
following sets of stable patterns:  



 

 

These behaviours combine sequentially in a series of typical developments 
which may be indicated in the following flow chart diagram over the 
landscape of different phase transtions between stable solution strategies 
(each arrow indicating a shift in strategy):  



 

 

No very simple pattern of phase transition between two states  is found, as 
suggested by Stephen et al 2009. Rather, a more complicated landscape of 
phase transition appears, with two attractors: the continuous curve-following 
and the discrete marking of the two directions, terminating in counting. 
Gestures accompanied by causal reasoning is generally instable as a strategy 
and will develop into either of the two stable states, the Continuous-silence 
and the Pointing-counting positions. Obviously, not all pairs of respondents 
reach one of these end points, but it seems as if those settling upon the less 
than optimal Continuous-silence strategy will typically remain there. All the 
different strategies characterized by a verbal indication of direction, however, 
may develop further to Pointing-direction or, ultimately, to the Pointing-
counting strategy.  

Full$circle,$Half$circle,$Wriggling–causal$

Full$circle–direc3on$

Poin3ng–coun3ng$

Con3nuous–silence$

Flow%chart%diagram%of%typical%developments%
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 There are some indications that early behaviour during the trials may 
indicate later strategy choices. Early alternation between left-right 
movements might be indicative of later discretization in terms of Wriggle-
direction of Pointing-counting, while, on the other hand, reliance upon causal 
arguments following wheel contours may be indicative of settling for the 
Continuity-silence strategy.  

 

 It is interesting to compare the strategies by reaction time at the last 
trial:  

 

 

 



 

 

Causal reasoning is obviously the slowest strategy, followed by the more 
efficient continuous stragety. After this comes, in order of increasing 
efficiency, the three strategies involving verbal indication of wheel directions 
-  the Circle, Pointing and Wriggling strategies with direction indications, 
respectively. It is remarkable that the Wriggle-direction strategy is almost as 
efficient as the Pointing-counting strategy, making it understandable that 
strategy developments may stop at the Wriggle-direction strategy.  

 

Conclusion 

Embodiment and collaboration - two hypotheses 

These results hold some important lessons as to the role of embodiment in 
diagram reasoning. It has often been pointed to the fact that diagrams 
facilitate reasoning by means of their spatial presentation of problems, 
making it possible to solve them by means of real or imagined bodily 
manipulation with parts of the diagram. Additionally, externalized diagrams 
on paper, board, screen or elsewhere facilitate the simultaneous or 
consecutive collaboration on the diagram by several persons. Both of these 
aspects, of course, are involved in the Cog Wheel experiment. As to the 
embodiment issue, an important result seems to be that "more" embodiment 
does not equal better solution strategy. The strategies which closely mimic 
the causal chain or the movement pattern of the wheels, touching the screen, 
are the least effective. The more effective strategies are the more abstract ones 
of Pointing-counting and Wriggle-direction which are by no means 
completely disembodied but which use gesture (pointing, wriggling) to 
address the discrete structure of the problem rather than its concrete, 
continuous materiality.  We may consider the different gestures as 



diagrammatic representations of possible solution strategies. Here, the causal 
arguments contain, in a sense, too much information. This is also the case 
with the continuous curve which is more efficient than simple causal 
reasoning but remains a suboptimal solution. Getting to the optimal solution 
requires an instance of insight. This step of abstraction seems to involve 
moving focus from local information about how two wheels influence each 
other to a more abstract, global regularity about every second wheel moving 
in the same direction. To get to the optimal solution, then,  it seems necessary 
to get away from a closely embodied interaction with the target.  Indeed, 
certain solvers successfully used the wriggling-direction strategy at a distance 
of several meters from the screen.  

 This may give rise to the following hypothesis. Not all reasoning is 
based on immediate embodied experience – but rather on abstraction from 
immediate, concrete and local embodied experience. It should be added, 
however, that this abstraction is by no means completely disembodied but 
accompanied with specific embodied strategies supporting abstraction - in 
this case the wriggling and pointing gestures. 

 As to the collaboration issue, the provisional results of the Cog Wheel 
experiment seem to indicate that mixed-media strategies involving both 
language and gesture are the more efficient. Moreover, comparisons with 
individuals solving the same task seem to show that pairs are more efficient 
than individuals.i 

 



 

 

Why do pairs perform better? A hypothesis may be that several reasons 
combine here. One explanation is that the task affords abstraction - and as 
pairs speak, language may form a route to finding the more abstract solution 
strategies. Another explanation is that individuals may tend to get stuck with 
their first solution, while pairs may bring different perspectives and 
strategies motivating the intuition that there might be more than one solution 
strategy to be tried out. A further explanation may be feedback between the 
two parties, in the shape of one participant watching the other's gesture and 
drawing further conclusions; more generally in the shape of collaboration or 
competition or both (the two should not be seen as mutually exclusive, rather 
as two feedback aspects which may even enhance each other).  
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i	These	provisional	data	were	collected	at	a	public	performance	at	the	"Science	in	the	City"	festival	
at	the	ESOF	conference,	Copenhagen,	June	2014.		


